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ABSTRACT ARTICLE HISTORY
In this article, we describe an unmanned aerial system equipped Received 8 October 2016
with a thermal-infrared camera and software pipeline that we have Accepted 26 December 2016
developed to monitor animal populations for conservation pur-

poses. Taking a multi-disciplinary approach to tackle this problem,

we use freely available astronomical source detection software

and the associated expertise of astronomers, to efficiently and

reliably detect humans and animals in aerial thermal-infrared foo-

tage. Combining this astronomical detection software with exist-

ing machine learning algorithms into a single, automated, end-to-

end pipeline, we test the software using aerial video footage taken

in a controlled, field-like environment. We demonstrate that the

pipeline works reliably and describe how it can be used to esti-

mate the completeness of different observational datasets to

objects of a given type as a function of height, observing condi-

tions, etc. — a crucial step in converting video footage to scienti-

fically useful information such as the spatial distribution and

density of different animal species. Finally, having demonstrated

the potential utility of the system, we describe the steps we are

taking to adapt the system for work in the field, in particular

systematic monitoring of endangered species at National Parks

around the world.

1. Introduction

A major task for the conservation research community is monitoring of species’ distribu-
tion and density. Species monitoring has usually been undertaken by surveys on the
ground (either on foot or by car), from the air with manned aircraft, and more recently
from space using satellites (Buckland et al. 2001, 2004; Fretwell et al. 2012; McMahon
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et al. 2014). There is a wealth of data from ground and aerial surveys, and the analytical
methods for analyses of such data have been well developed (Buckland et al. 2001,
2004). However, the costs of these surveys are high due to the extensive time commit-
ments involved and the small areas which can be covered by individual ground surveys.
Although aerial surveys cover larger areas, the costs of hiring or purchasing aircraft are
often cost prohibitive for conservation research and/or aircraft are simply not available
in the areas that need to be surveyed. In addition, flying low over areas where landing
opportunities are limited in case of an emergency is risky (Sasse 2003). Alternative
methods are, therefore, urgently needed to monitor biodiversity better.

A particularly promising method for biodiversity monitoring is the use of drones." The
falling cost of both drones and small, hi-fidelity cameras, which can be attached to these
drones, has led to an explosion in the use of aerial footage for conservation research.
Many of these applications require detecting and identifying objects in the obtained
images. The fact that this task is mostly conducted manually - which is labour-intensive,
inherently slow, and costly - is a major bottleneck in maximizing the potential of the
enormous volumes of data being collected, and the efficiency with which drones can be
used.

To date most drone work has been done with cameras operating at visible wave-
lengths (e.g. Jones et al. 2006; Rodriguez et al. 2012; Koh and Wich 2012; Barasona et al.
2014; Linchant et al. 2015; Wich 2015; Mulero-Pazmany et al. 2015; Van Andel et al. 2015;
Canal et al. 2016). Studies at these wavelengths suffer from two limitations. First, visible
cameras only work in the daytime, so are essentially ‘blind’ for half of the time. Certain
applications, such as identifying poaching activity or tracking and monitoring the large
number of species that are active at night, are therefore impossible. Second, because the
light that we do see at visible wavelengths is reflected sunlight, all objects have very
similar brightness. This makes it difficult and computationally expensive to separate
objects from the surrounding background in an automated way without human inter-
vention, adding to the challenge of efficiently detecting and identifying objects of
interest in the data.

Because the body temperature of most warm-blooded animals is approximately
~300 K, using detectors that are optimally sensitive to emission from objects at this
temperature might improve detection of animals. The spectral energy distributions of
objects with temperatures around 300 K peak at wavelengths of ~10 um. Cameras
operating in this ‘thermal-infrared regime are, therefore, optimally sensitive to wave-
lengths at which warm-blooded animals emit most of their radiative energy. At these
same wavelengths, cooler objects — such as plants and surrounding terrain - rarely emit
strongly. In theory, the resulting large intensity contrast between warm-blooded animals
and the background makes the thermal regime particularly well suited to easily finding
and identifying warm-blooded animals, both during the day and at night. This advan-
tage of thermal-infrared imaging is maximized in cold, dry environments and diminishes
as the temperature and humidity increase (see e.g. Mulero-Pa’zm’any et al. 2014).

Although the thermal-infrared regime offers major advantages, significant barriers
have hampered monitoring at these wavelengths. Until recently thermal-infrared cam-
eras have been prohibitively expensive for small-scale research projects. Now that they
are becoming affordable (a basic unit can be purchased at the 1-10k Euro level),
researchers in many different areas are exploiting the advantages they offer to detect
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and identify species such as red deer (Chrétien, Théau, and Ménard 2016), American
bison, fallow deer, grey wolves, and elks (Chrétien, Théau, and Ménard 2015), koala
(Gonzalez et al. 2016), roe deer (Israel 2011), and hippos (Lhoest et al. 2015). Mulero-
Pazmany et al. (2014) compare the efficacy of aerial footage at both thermal and visible
wavelengths for rhinoceros surveillance and people detection in the frame of anti-
poaching operations.

As the volume of data from such studies increases, the major bottleneck in maximiz-
ing the scientific output are the analysis tools, which are currently less well developed
than at visible wavelengths. Indeed, many studies have used manual detection and
identification of species, which can be prohibitively time consuming and the results are
dependent on the person doing the detection and identification. This inherent subjec-
tivity means the results may not be repeatable, which is clearly not ideal. Several
different groups have been working to overcome this problem by developing algo-
rithms to automate the detection and identification process (e.g. Lhoest et al. 2015;
Chrétien, Théau, and Ménard 2015, 2016; Gonzalez et al. 2016) In this article, we seek to
use a complementary method to help overcome this bottleneck. Astronomers have
routinely been using (thermal-) infrared images for a number of decades to derive the
properties of astrophysical objects. Due to the extreme distances involved, the emission
from astronomical objects is usually very faint, and objects are often not well resolved
(i.e. objects are only marginally larger than pixel scale of the camera and point spread
function of the telescope). The analytical tools developed by astronomers are, therefore,
optimized to overcome these limitations — exactly the same challenges that need to be
overcome for monitoring animal populations in aerial video footage.

Last year we began a new research venture aiming to build upon astronomical
software algorithms, develop an automated thermal (infrared) drone detection/identifi-
cation pipeline and demonstrate its potential for aiding conservation research by
monitoring animal populations. In this article, we first summarize the system we con-
structed before describing initial results of a pilot proof-of-concept project to assess the
system’s applicability for field work. We finish by outlining future prospects for expand-
ing the system to tackle challenges in conservation research.

2. Materials and methods

Figure 1 shows a schematic flow chart of the four different components making up the
system. In this section, we briefly describe each of these components and outline the
design decisions made when putting the system together. In Section 3, we provide more
specific details for the system used in the proof-of-concept project.

va Potential EI ‘

Machine
learning

Video stream (Astro)
detection

software

objects Confirmed

of interest objects

Figure 1. Flow chart of the system.
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Component 1 relates to the hardware (the unmanned aerial vehicle (UAV) and
camera) and the flight path (height, trajectory, velocity) used to obtain the video
footage. As some aspect of component 1 will vary every time the system is used, and
the subsequent detection/identification software components are sensitive to variations
in the input video data, it is important to optimize the pipeline for the specific hardware
and flight plan. Details of the hardware used for the pilot project, and the way in which
details of the hardware plus flight plan can be used to optimize the pipeline are
described in Section 3.

Components 2 and 3 are the main software parts of the system that were developed.
It was the lack of existing freely available software pipelines to automatically detect and
identify objects in (thermal) video data that originally motivated the project. After
investigating potential solutions to developing the end-to-end pipeline, it became
clear that there are a plethora of freely available software packages that solve individual
parts of the problem. Given the long-term goal of the project to develop a robust and
cost-effective system, when presented with different software choices, we opted for
freely available, open source, widely used and tested software as a top priority. A
secondary consideration was the run time and resources required to achieve a given
task, opting for the quicker and less intensive option as this would be preferable if
attempting a real-time pipeline in the future (see Section 4.2). After investigating
different solutions we opted for Python as the language of choice for its portability,
large number of pertinent open source packages that could be of potential use for the
pipeline, and ease of combining the different components into a single, coherent pipe-
line. In Sections 2.1 and 2.2 later, we describe components 2 and 3 in detail.

2.1. Source detection software

As outlined in the introduction, astronomers have been analysing (thermal-) infrared
images for decades and there are many different software packages available to aid
such analysis. Given the criteria outlined in Section 2, for the source detection soft-
ware of this project (component 2) we used the routines available in astropy, the
standard freely available, open source astrophysical software package for Python that
has been widely used and tested within the astrophysics community (Robitaille et al.
2013). Specifically, we used routines within photutils to identify and extract sources
within images.

There are several different functions available: irafstarfind, daofind, and find_peaks.
Comparing these functions, irafstarfind and daofind deliver a larger range of customiza-
tion of target source parameters and return more detail on detected sources. However,
for this particular application these details were deemed unnecessary and also increased
the run time significantly. We found that the find_peaks routine provides the best
compromise in terms of functionality and run time.

The routine find_peaks works by identifying subregions in a two-dimensional image
where all the pixels within a user-defined area of N pixels are above a user-specified
threshold value. The optimal values for these parameters depend on many factors, most
critically the absolute level and variation in background ‘noise’ across the image, and the
size, shape, and separation of the objects of interest. In Section 3, we describe how the
pilot project was used to assess how well these key parameters can be determined
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on-the-fly, and how robust the pipeline detections are against variations in the initial
estimate of these parameters.

2.2. Source identification software

There are several freely available source identification methods written in Python. The
most prominent and well-supported revolve around the Open Source Computer
Vision (OpenCV) libraries. OpenCV contains many packages, most of which proved
unsuitable for our purposes. In particular, we found (perhaps unsurprisingly) that the
libraries dedicated to human facial recognition provided poor results when attempt-
ing to identify humans and animals in thermal aerial footage. In addition, these
libraries took the longest to train. This left one obvious candidate, the hog (histogram
of oriented gradients) detector, which uses Support Vector Machine (SVM) and has
had great success in the field of human detection since its inception (Dalal and Triggs
2005).

The computer vision libraries rely on machine learning algorithms. In order to
correctly identify objects, one must first ‘train’ these algorithms. This is done by provid-
ing the libraries with two different sets of images: one containing images of the object
of interest and the other containing images in a similar setting but without containing
the object of interest. The libraries then process these different lists of images to
calculate a set of ‘vectors’ which optimally describe the object of interest and that can
be used to identify the object in subsequent images. The more fully the original set of
images covers the possible range of viewing angles, distances, etc. to the object of
interest, the more robust the identification process will be.

We conducted some initial tests running the machine learning code directly on the
full image sizes from different cameras. The hope was that if this could be run quickly
and accurately enough, it could alleviate the need for the detection step (component 2,
Section 2.1). However, it was immediately obvious that when most of the pixels in most
of the video frames do not contain objects of interest (as will usually be the case), this is
an incredibly inefficient way to operate. The run time of the machine learning step is
orders of magnitude longer than the detection step, so even on a high-end desktop
machine the run time is prohibitive. This motivated our decision to stick with an initial
detection step, and then use cutouts of potential detections as the input for the
machine learning step, thereby only running the computationally most expensive algo-
rithms on a very small subset of the full dataset.

In Section 3, we discuss the machine learning and training process in the context of
the pilot study.

3. Results

When working in real monitoring situations, video footage will likely cover a range of
environments such as varying topography and vegetation coverage. However, for the
pilot stage of the project our goal was to obtain footage that could be most readily used
to test and develop the software pipeline. We therefore opted to obtain footage under
the simplest possible environmental conditions - relatively uniform and limited vegeta-
tion coverage with little topographic variation — and containing only a single, easily
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identifiable species of animal. We worked with a local farmer who gave us permission to
fly a drone over the cows in his fields and take such test data.

The data for the pilot project were taken on the afternoon of 14 July 2015 at Arrowe
Brook Farm Wirral, UK (53.3701 N, —3.1105). The weather was mostly sunny with a few
clouds. The average air temperature during the flights was ~15-20°C. The rational for
flying in the UK during the day in summer is that this provides similar ground tempera-
tures to the night-time ground temperatures at many of the world’s major national parks
involved in conservation of megafauna.

The UAV for the pilot project was a custom-made 750 mm carbon-folding Y6-multi-rotor
with an APM 2 autopilot from 3Drobotics shown in Figure 2. The system uses 14 in. X 4.8 in.
carbon fibre propellors and X5 3515 400 kV motors. A FrSky Taranis transmitter and receiver
were used. The system was powered with a Multistar 65 8000 mAh lipo battery. The 3DR
radio telemetry kit was used at 433 MHz. As ground station we used a Lenovo laptop. The
system was provided by http://www.droneshop.biz. The camera was a passively cooled,
FLIR, Tau 2 LWIR Thermal Imaging Camera Core with a 7.5 mm lens and 640 x 512 pixels
operating at 75 Hz. For this first test run, the camera was strapped to a gimbal at the front of
the UAV, put into video mode, and switched on manually to begin taking footage before the
UAV took off. The video footage was captured directly on the camera’s detachable universal
serial bus (USB) data storage system (ThermalCapture) that was developed by http://www.
teax-tec.de/. We conducted two flights with this system to capture both humans and cows
from different angles and heights, up to a maximum altitude of 120 m. After the flights were
finished, the data were then manually transferred to a separate computer for reduction and
analysis.

3.1. Optimizing the detection algorithm

The next step was to run the find_peaks source detection software on the video footage.
It became immediately clear that blindly running find_peaks on the data with no
constraints on the input parameters produced very poor results. We found that the
two key parameters to set are the threshold noise level above which pixels are con-
sidered as potential detections, and the minimum/maximum area allowed for an object
to be selected as a potential detection. As we describe below, with some basic knowl-
edge about (i) the characteristic properties of the sources of interest, (ii) the camera
angle with respect to the horizon, (iii) the camera field of view and pixel scale, and (iv)
the height of the unmanned aerial system (UAS) above ground level as a function of
time, it is possible to provide sensible inputs to the find_peaks detection algorithm that
produce good detection statistics.

Figure 3 shows a simplified schematic diagram of the drone plus camera system
geometry with respect to the ground through which one can determine required
inputs.” In this schematic, the ground is approximated as being flat. At any given
moment the drone is at an instantaneous height, H, above the ground. H is known
accurately as a function of time from global positioning system (GPS) data recorded on
both the camera and the UAV. The camera is at an angle 8 with respect to the ground,
where 8 = 0° corresponds to pointing the camera straight at the ground, and 6 = 90°
corresponds to the camera pointing straight ahead towards the horizon. This angle is
either set and recorded by the gimbal if using a moving camera setup, or fixed for the
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Figure 2. Photographs of the drone used in the pilot project. A standard 30 cm, clear plastic ruler is
shown on the table to provide the scale.

flight and can therefore be measured prior to launch. The angle ¢ is the camera’s field of
view which is known to high accuracy from the design specifications.

We next consider the instantaneous area of ground viewed by the camera
attached to the drone. The camera frame is rectangular with 640 x 512 pixels. Each
of the pixels subtends an equal angular extent. Geometric projection means the area
of ground covered is not rectangular, but rather trapezoidoidal in shape, as shown in
Figure 4.
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Figure 3. Schematic diagram showing distances and geometric projections. See Section 3.1 for
definition of the variables.
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Figure 4. Schematic diagram showing the camera’s projected field of view on the ground. See
Section 3.1 for definition of the variables.

With H, 6, ¢ and the pixel scale known, simple trigonometric relations provide the
distance from the camera and the horizontal distance along the ground - which we
denote R and D, respectively, in Figure 3 - to any point on the ground in the camera’s
field of view. The subscripts C, M, F refer to the closest, middle, and farthest distances
from the camera, respectively.

We can now use a rough estimate of the expected range of size and shape of the
objects of interest to constrain the angular area of these objects that will be projected
into the camera’s field of view. For example, in the pilot project we were interested in
detecting cows and humans in the video footage. We estimated the plausible maximum
and minimum height, length and width of cows and humans vary between 0.5 and 2 m.
The angular size of an individual object projected on to the camera will depend both on
the intrinsic size of the object and the angle from which it is viewed. We calculated the
maximum and minimum projected area for cows and humans, and used these as the
range in input areas for the detection algorithm. Note that this area varies as a function
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of position across the camera, decreasing for objects closer to the horizon. We found
that using this simple estimation of expected angular extent of objects did a good job of
only selecting objects of interest in the data.

Clearly, there will always be some uncertainties in H, 6, ¢, and the pixel scale, and the
assumption of flat ground will break down in certain situations. We attempted to
simulate the effect of these uncertainties by over/under estimating the expected pro-
jected area of objects by varying amounts. We found that the number of sources
detected was robustly recovered even when over/under estimating the source size by
a factor of two. This is much larger than the expected over/under estimate due to
uncertainties in H, 6, ¢, and the pixel scale, and should be robust in all but the most
extreme topographic environments (e.g. cliffs, mountains).

With knowledge of the ground temperature and expected animal temperature, and
assuming their spectral energy distributions are well described as a blackbody emitting
radiation at that temperature, one can use the Planck function to calculate the radiative
intensity of both animals and ground. This in turn provides the expected contrast, and
hence approximate intensity level above the background noise to set as the threshold
for qualifying a detection. Making the standard assumption that the flux from an object
falls off as the reciprocal of the distance squared, we can also estimate how the
expected flux may change as a function of the location on the camera. We found that
although this approach worked, it was in fact easier just to calculate a simple root mean
square (RMS) deviation in the intensity level of all the pixels in the image and take a
value 3-5 times higher as the threshold. Both approaches did a good job of finding the
objects of interest in the data and the robustness of the detection did not depend
strongly on the exact threshold level, as long as it was far enough above the background
noise level.

In summary, with reasonable estimates of the source size and intensity the detection
algorithm did a reliable job of recovering the objects of interest in the data.
Comfortingly, the number of detections is robust when the size and intensity are
over-/under-estimated by up to factors of 2. However, it should be noted that the
pilot experiment was conducted under idealized conditions, and the conclusions need
to be reassessed in real field conditions.

3.2. Optimizing the identification algorithm

We then wanted to test the robustness of the machine learning object identification
code and understand the conditions under which it worked efficiently. In order to do
this, we first ran all the individual frames of the video footage from one of the flights
through the detection process described in Section 3.1. At the location of every detec-
tion we cut out a small, fixed size,? square subset of the full frame around that detection,
and stored all of these cutout images in a folder of ‘potential identifications’. We then
inspected each of these by eye and sorted which of these contained humans, cows or
neither (i.e. spurious detections). This provided the ground truth results against which
we could test the machine learning algorithms.

We then selected video frames in which there were no cows or humans, and
randomly extracted cutouts with the same size to act as the negative images for the
training step of the machine learning process. Using the human and cow cutouts as the
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‘positive’ training images and the random background noise images as the ‘negative’
training images, we ran the hog+svm algorithm to generate human and cow vectors
that could be used to identify cows and humans in other video footage.

We then attempted to run components 2 and 3 of the pipeline concurrently on video
footage from other different flights. Using the steps outlined in Section 3.1, we gener-
ated a set of cutout images of all detections, which were classed as ‘potential identifica-
tions’. We then ran these potential identifications through the machine learning code,
separated them into those which the code thought did or did not contain cows and
humans, and subsequently verified by eye whether the code had identified these
correctly. In this way, we were able to quantify the accuracy of detections in each frame.

We found that the variable that most strongly affected the accuracy was the height of
the drone above the ground. When the drone was close to the ground (< 80 m altitude
in the particular example of the pilot study data), the cows and humans were well
resolved and the algorithm did a reasonable job of correctly identifying them. The
average detection accuracy at low altitudes was at least ~70% with a scatter of roughly
+ 10% depending on variation in background levels. The majority of cases in which the
algorithm misclassified an actual detection as a non-detection was when the cows were
huddled close together, and there were multiple overlapping cows. These issues were
exacerbated when the drone altitude increased, and at a height of 120 m the average
successful identification fraction had dropped by 10%.

Clearly, dealing with such issues is an area for improvement for further versions of the
pipeline. However, it was encouraging to note that while in an individual frame the
algorithm may only correctly identify 70% of the cows, over the course of the full video
footage, all of the cows were individually detected in a large number of frames. With
appropriate tracking of individually identified objects as a function of time, it should be
possible to achieve much higher accuracy for the number of animals correctly identified.

4. Discussion
4.1. Optimizing the scientific return from future monitoring programmes

From the pilot project, we have begun to quantify under what circumstances our
approach will be able to robustly detect and identify objects of interest. This in turn
can be used to help guide decisions regarding the appropriateness of using this system
in different situations, and how to optimise the scientific return from monitoring
programmes.

For example, in any aerial monitoring programme, there will always be a tradeoff in
the area of ground that can be covered in a single flight and the level of detail with
which it is possible to survey that area. Put simply, flying closer to the ground will
provide higher resolution images at the expense of the area that can be covered. The
key to optimizing the scientific return lies in calculating the maximum height at which to
fly before it is no longer possible to detect or identify the objects of interest robustly.

Using the pilot project as an example, if we wanted to monitor cows over a much
larger area with the same system as discussed earlier, we could use the information
gained from the pilot project to determine how much area it will be feasible to cover.
We have determined that the optimal drone height for detection and identification of
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cows is 80 m. From Figure 4, at a height of 80 m the camera’s field of view corresponds
to an area on the ground of approximately 17500 m2 Assuming that the drone can fly
for 30 min (the approximate lifetime of the battery) and flies at an average speed of
15 m s~' the drone can cover a ground area of order 3.5 km? per flight. This allows one
to optimize the flight paths for the region to be monitored.

Flying height will, however, not only be determined by resolution requirements, but
also by the potential reaction of animals to flying a UAS. The cows did not show any
visible reaction to the UAS flying above them, but other studies have indicated that in
some cases animals can have increased heart rates or show flight responses when UASs
are flown close to them (Ditmer et al. 2015; RUmmler et al. 2015). In a review on wildlife
conservation and UASs, Chabot and Bird (2015) conclude that generally UASs lead to no
or low levels of disturbance, and specifically so when compared to direct surveys on the
ground or much more noisy surveys from manned aircraft. At this moment there are no
general ethical guidelines for using UASs in animal surveys, but conservationist have
proposed the development of such guidelines (Hodgson and Koh 2016). The ever-
increasing resolution of satellites and opportunities for monitoring animals from space
is leading to promising results (e.g. Fretwell, Staniland, and Forcada 2014; Yang et al.
2014). Of all animal survey methods, it will have the lowest disturbance, but this method
is still in its infancy.

In order to accurately monitor animal populations, the detections/identifications from
such aerial footage must be converted into animal number densities. Achieving that
requires understanding the ‘completeness’ of the observations, i.e. the fraction of a
species in the area surveyed that each observation is sensitive to. This completeness
fraction, F¢, will depend on environmental factors (e.g. ground temperature, vegetation
coverage), species-specific factors (e.g. mean size, shape, body temperature, daily beha-
viour patterns), and flight-specific parameters (e.g. height above ground, angle of
camera relative to ground level). All of these factors are likely to vary between different
flights. Many will also vary within the same flight and even as function of pixel area
within individual frames. F¢ is, therefore, a potentially complicated function of time and
pixel location in a given dataset.

The software pipeline we have developed provides a convenient way to estimate Fc
in environments where variations in ground temperature rather than vegetation cover is
the limiting factor.* Examples of such environments would be pasture-land (such as that
in which we conducted the pilot project), savannah and any generally open, tree-less
plains.

To estimate, Fc we replicate the technique used in astronomy to estimate how
complete a given observational dataset is to stars of a given brightness. In this techni-
que, astronomers inject fake stars with known brightness at random locations into their
image and measure how many of these are successfully recovered using their detection
algorithms. By repeating this process a very large number of times in a Monte Carlo
experiment and varying the brightness of the stars injected, they determine the fraction
of stars they expect to recover as a function of position across the image.

To estimate F¢ in aerial video footage, the same outcome can be achieved by
inserting fake objects of interest rather than stars into the video frames. In order to do
this for the pilot project data, we ran the following Monte Carlo experiment. We first
randomly selected a location in the current video frame at which to inject a fake cow or
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human. We then randomly selected an image cutout of a cow or human that had been
previous successfully identified from a similar location in the frame in a different flight
when the drone was at a similar height. We then manually added the cow or human to
the image at that location and ran the detection and identification steps again to see if
this cow or human was successfully identified. By repeating this process hundreds of
times with different randomly selected locations and humans/cows we calculated the
fraction of times humans/cows were recovered as a function of position across the
image for every frame in the video footage. Figures 5 and 6 show single frame thermal-
infrared snapshots of cows and humans, and example output images from the detection
and identification pipeline, respectively.

We found that for the pilot data sets the completeness level varied less than 5%
across the images throughout the flight, with a few exceptions. When an object was
placed close to roads the completeness level dropped to almost 0%. This is because the
roads were much hotter than the fields, so the contrast between the object and the
background was much smaller (see Figure 5). The completeness also dropped markedly
when the object was placed too close to another object of the same type. This is the
same issue in object crowding discussed earlier.

Our tests were conducted in the UK where the contrast between a warm animal body
and the ground will be larger than in countries where daytime temperatures are higher

Figure 5. Single frame thermal-infrared snapshots from the pilot project of humans (top row) and
cows (bottom row). The left and right hand columns show low and high altitude footage,
respectively.
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Figure 6. Example output from the detection and identification pipeline towards cows (left) and
humans (right). Blue circles denote ‘hot-spots’ that were initially selected by the detection algorithm
before the size criteria was applied. Green and red rectangles show the location of objects which the
algorithm ultimately identified as either a cow (left) or human (right). For illustrative purposes, in
this instance the geometric correction for the expected size as a function of pixel location has not
been applied. This shows that the cows in the background (i.e. towards the top of the image) with a
smaller projected size were not automatically identified.

and the ground surface will be warmer as well. A previous study indicated that in South
Africa detection of rhinoceros with a thermal-imaging camera was best during the early
morning when the contrast between the surface and the animal is highest (Mulero-
Pdzmany et al. 2014). This indicates that for animal detection early morning flights might
lead to the best detection and that there is therefore no need for night flights for animal
detection. Night flights might, however, be needed to detect poachers. In this case
exemptions from standard regulations where a drone system needs to remain visible are
needed because adding LEDs to a drone for visibility would also give the location of the
system away to poachers.

4.2. Future work

The pilot project has demonstrated that the software pipeline has the potential to
help automate the detection and identification of animals in aerial footage. The
next step is to prepare the system for work in the field to begin systematic
monitoring of animal populations. With help from established conservation teams,
we have begun to analyse existing video footage taken in National Parks around the
world. We are focusing on developing the algorithms to robustly identify mega-
fauna in these parks, especially those which are endangered, such as rhinos. In
order to build up the machine learning vector libraries for such species, we are
working with Knowsley Safari Park (United Kingdom) to obtain video footage of
these species from all different viewing angles as a function of time of day,
vegetation coverage, etc. After creating the libraries, we will begin to test them
systematically on the existing footage to quantify how robustly we can detect
animals, and determine the completeness levels we will be able to provide.
Armed with this information we then hope to begin working with National Parks
to begin a systematic monitoring programme that will automatically provide
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number densities of different species as a function of time and position, and alert
rangers to possible poaching activities.

Although we are primarily focused on using the pipeline for conservation research,
such a generic pipeline has the potential to be useful in other areas. We are, therefore,
also actively exploring other areas in which the pipeline may be of use for scientific
research or humanitarian efforts.

5. Conclusions

We have described a drone plus thermal-infrared camera system and software pipeline
that we developed with the aim of helping monitor animal populations for conservation
purposes. We demonstrated that astronomy software can be used to efficiently and
reliably detect humans and animals in aerial thermal-infrared footage. Combining this
astronomical detection software with existing machine learning algorithms into a single
pipeline we tested the software using video footage taken in a controlled, field-like
environment. We demonstrated that the pipeline works well and described how it can
be used to estimate the completeness of different observational datasets for objects of a
given type as a function of height, observing conditions, etc. - a crucial step in
converting footage to scientifically useful information such as animal densities. We are
currently taking the steps necessary to adapt the system for work in the field and hope
to begin systematic monitoring of endangered species in the near future.

Notes

1. We use the terms ‘drone’ and ‘unmanned aerial vehicle’ (UAV) to denote the vehicle and
‘unmanned aerial system’ (UAS) to specify the vehicle plus imaging payload.

2. See Mulero-Pdzmany et al. (2014) for a similar geometric relations approach for analysing
aerial video footage including equations app.

3. The size of the cutout was determined to be twice the maximum extent in pixels of the
objects as determined in Section 3.1

4. See Mulero-Pazmany et al. (2015) for a discussion on how to estimate completeness in
environments with variable vegetation coverage.
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